Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Nat Prod ; 86(4): 1061-1073, 2023 04 28.
Article in English | MEDLINE | ID: covidwho-2297701

ABSTRACT

Botanical natural products have been widely consumed for their purported usefulness against COVID-19. Here, six botanical species from multiple sources and 173 isolated natural product compounds were screened for blockade of wild-type (WT) SARS-CoV-2 infection in human 293T epithelial cells overexpressing ACE-2 and TMPRSS2 protease (293TAT). Antiviral activity was demonstrated by an extract from Stephania tetrandra. Extract fractionation, liquid chromatography-mass spectrometry (LC-MS), antiviral assays, and computational analyses revealed that the alkaloid fraction and purified alkaloids tetrandrine, fangchinoline, and cepharanthine inhibited WT SARS-CoV-2 infection. The alkaloids and alkaloid fraction also inhibited the delta variant of concern but not WT SARS-CoV-2 in VeroAT cells. Membrane permeability assays demonstrate that the alkaloids are biologically available, although fangchinoline showed lower permeability than tetrandrine. At high concentrations, the extract, alkaloid fractions, and pure alkaloids induced phospholipidosis in 293TAT cells and less so in VeroAT cells. Gene expression profiling during virus infection suggested that alkaloid fraction and tetrandrine displayed similar effects on cellular gene expression and pathways, while fangchinoline showed distinct effects on cells. Our study demonstrates a multifaceted approach to systematically investigate the diverse activities conferred by complex botanical mixtures, their cell-context specificity, and their pleiotropic effects on biological systems.


Subject(s)
Alkaloids , Antineoplastic Agents , Benzylisoquinolines , COVID-19 , Stephania tetrandra , Stephania , Humans , Stephania tetrandra/chemistry , SARS-CoV-2 , Benzylisoquinolines/pharmacology , Benzylisoquinolines/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Antiviral Agents/pharmacology , Stephania/chemistry
2.
Brief Bioinform ; 23(6)2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2097311

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus-host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Protein Interaction Maps , Nuclear Proteins , Transcription Factors , Antiviral Agents/pharmacology , Ubiquitin Thiolesterase , Cell Cycle Proteins
3.
Microbiol Spectr ; 10(5): e0333122, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2053144

ABSTRACT

Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination. Concurrently targeting virus entry and virus replication offers opportunities to discover synergistic drug combinations. While combination antiviral drug treatments are standard for chronic RNA virus infections, no antiviral combination therapy has been approved for SARS-CoV-2. Here, we demonstrate that combining host-targeting antivirals (HTAs) that target TMPRSS2 and hence SARS-CoV-2 entry, with the DAA molnupiravir, which targets SARS-CoV-2 replication, synergistically suppresses SARS-CoV-2 infection in Calu-3 lung epithelial cells. Strong synergy was observed when molnupiravir, an oral drug, was combined with three TMPRSS2 (HTA) oral or inhaled inhibitors: camostat, avoralstat, or nafamostat. The combination of camostat plus molnupiravir was also effective against the beta and delta variants of concern. The pyrimidine biosynthesis inhibitor brequinar combined with molnupiravir also conferred robust synergistic inhibition. These HTA+DAA combinations had similar potency to the synergistic all-DAA combination of molnupiravir plus nirmatrelvir, the protease inhibitor found in paxlovid. Pharmacodynamic modeling allowed estimates of antiviral potency at all possible concentrations of each agent within plausible therapeutic ranges, suggesting possible in vivo efficacy. The triple combination of camostat, brequinar, and molnupiravir further increased antiviral potency. These findings support the development of HTA+DAA combinations for pandemic response and preparedness. IMPORTANCE Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. Here, we show that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and we use mathematical modeling to show that these drug combinations are likely to work in people. We also show that a combination of three oral drugs works even better at eradicating the virus. Our findings therefore bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Antiviral Agents/pharmacology , Protease Inhibitors/pharmacology , Drug Combinations , Pyrimidines
4.
iScience ; 25(4), 2022.
Article in English | EuropePMC | ID: covidwho-1781054

ABSTRACT

Summary Broadly effective antiviral therapies must be developed to be ready for clinical trials, which should begin soon after the emergence of new life-threatening viruses. Here, we pave the way towards this goal by reviewing conserved druggable virus-host interactions, mechanisms of action, immunomodulatory properties of available broad-spectrum antivirals (BSAs), routes of BSA delivery, and interactions of BSAs with other antivirals. Based on the review, we concluded that the range of indications of BSAs can be expanded, and new pan- and cross-viral mono- and combinational therapies can be developed. We have also developed a new scoring algorithm that can help identify the most promising few of the thousands of potential BSAs and BSA-containing drug cocktails (BCCs) to prioritize their development during the critical period between the identification of a new virus and the development of virus-specific vaccines, drugs, and therapeutic antibodies. Graphical Pharmaceutical preparation;Pharmaceutical science;Pharmacology;Chemistry

5.
mBio ; 12(6): e0334721, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1599212

ABSTRACT

The world was unprepared for coronavirus disease 2019 (COVID-19) and remains ill-equipped for future pandemics. While unprecedented strides have been made developing vaccines and treatments for COVID-19, there remains a need for highly effective and widely available regimens for ambulatory use for novel coronaviruses and other viral pathogens. We posit that a priority is to develop pan-family drug cocktails to enhance potency, limit toxicity, and avoid drug resistance. We urge cocktail development for all viruses with pandemic potential both in the short term (<1 to 2 years) and longer term with pairs of drugs in advanced clinical testing or repurposed agents approved for other indications. While significant efforts were launched against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in vitro and in the clinic, many studies employed solo drugs and had disappointing results. Here, we review drug combination studies against SARS-CoV-2 and other viruses and introduce a model-driven approach to assess drug pairs with the highest likelihood of clinical efficacy. Where component agents lack sufficient potency, we advocate for synergistic combinations to achieve therapeutic levels. We also discuss issues that stymied therapeutic progress against COVID-19, including testing of agents with low likelihood of efficacy late in clinical disease and lack of focus on developing virologic surrogate endpoints. There is a need to expedite efficient clinical trials testing drug combinations that could be taken at home by recently infected individuals and exposed contacts as early as possible during the next pandemic, whether caused by a coronavirus or another viral pathogen. The approach herein represents a proactive plan for global viral pandemic preparedness.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus/drug effects , Drug Combinations , Animals , Coronavirus/classification , Coronavirus/pathogenicity , Coronavirus Infections/drug therapy , Humans , Mice , Pandemics/prevention & control , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
6.
Pathogens ; 10(1)2021 Jan 07.
Article in English | MEDLINE | ID: covidwho-1024620

ABSTRACT

Chronic hepatitis C (CHC) is a major cause of hepatocellular carcinoma (HCC) worldwide. While directly acting antiviral (DAA) drugs are now able to cure virtually all hepatitis C virus (HCV) infections, even in subjects with advanced liver disease, what happens to the liver and progression of the disease after DAA-induced cure of viremia is only beginning to emerge. Several large-scale clinical studies in different patient populations have shown that patients with advanced liver disease maintain a risk for developing HCC even when the original instigator, the virus, is eliminated by DAAs. Here we review emerging studies derived from multiple, complementary experimental systems involving patient liver tissues, human liver cell cultures, human liver slice cultures, and animal models, showing that HCV infection induces epigenetic, signaling, and gene expression changes in the liver associated with altered hepatic innate immunity and liver cancer risk. Of critical importance is the fact that these virus-induced abnormalities persist after DAA cure of HCV. These nascent findings portend the discovery of pathways involved in post-HCV immunopathogenesis, which may be clinically actionable targets for more comprehensive care of DAA-cured individuals.

SELECTION OF CITATIONS
SEARCH DETAIL